MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2016

Calculator-free

Marking Key

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

Section One: Calculator-free

(50 Marks)

Marks

1

Question 1 (a)

Solution

The worker determined the degree of each vertex and concluded that the network had no odd vertices.

Marking key/mathematical behaviours	Marks
determines degree of each vertex	1
 identifies there are no odd vertices 	1

Question 1 (b)

Solution

Eulerian.

Marking key/mathematical behaviours

identifies type of trail

Question 1 (c)

Solution	
T A B E F B C D B H G F H T (or reverse order) T A B C D B H G F B E F H T (or reverse order)	
Marking key/mathematical behaviours	Marks
lists first seven vertices in correct order	1
lists remaining seven vertices in correct order	1

Question 2 (a)

Solution

The relationship is weak. The correlation coefficient is about 0.45 OR the data points do not form a close linear pattern.

Marking key/mathematical behaviours	Marks
 describes the strength of the linear relationship 	1
justifies conclusion	1

Question 2 (b)

Solution			
(i) There would be about 10 burglaries			
(ii) As the number of assaults increases by 1 the number of burglaries decreases by 1.			
Marking key/mathematical behaviours Marks			
interprets the y-intercept	1		
 describes the change as negative 	1		
 identifies the rate of change as 1 for 1 [1 mark for each value] 	2		

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

Question 3 (a)

Question 3 (b)

Question 3(c)

- (i) Bank
- (ii) Graph showing direct edge from Town 9 to the bank.

It is impossible to draw an edge from Town 9 to the bank without crossing another	edge
Marking key/mathematical behaviours	Marks
 (i) designates that a bank is the additional service 	1
 (ii) draws a graph showing edge from Town 9 to bank 	1
	1

• draws with correct edges crossing

Question 4 (a)

Solution			
Letters A, C and D should be circled			
Varking key/mathematical behaviours Marks			
selects one correct feature	1		
selects second correct feature	1		
 selects third correct feature (only selecting 3) 	1		

Question 4 (b)

Cannot travel every edge only once AND start and finish at same vertex	
Marking key/mathematical behaviours	Marks
describes first condition	1
describes second condition	1

Question 4 (c)

Solution			
Euler's Rule : n(vertices) + n(faces) – n(edges) = 2			
5 + 3 - 6 = 2			
Marking key/mathematical behaviours	Marks		
states Euler's Rule	1		
substitutes correct number of vertices, faces and edges	1		

Question 4 (d)

Solution	
Graph is still connected when edge PQ is removed	
Marking key/mathematical behaviours	
explains graph remains connected	1
when edge PQ removed	1

Question 4 (e)

Solution			
The degree of vertex R is <u>3</u> because <u>exactly 3 edges meet at R</u> .			
Marking key/mathematical behaviours	Marks		
identifies degree of node	1		
justifies choice of value	1		

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

Question 5 (a)

Solution						
Number of hours pump was working	1	2	3	5		6
Volume of water in the tank (in litres)	360	560	760	1160	13	60
Marking key/mathematical behaviours Marks					Marks	
determines starting value and third term					1	
determines 5 th term			1			
identifies term number					1	

Question 5 (b)

Solution

760 litres	
Marking key/mathematical behaviours	Marks
 relates sequence to context of problem 	1

Question 5 (c)

Solution	
$T_{n+1} = T_{n+1} = 200$ $T_1 = 360$	
Marking key/mathematical behaviours	Marks
describes recursive relation	1
 identifies starting term (or any particular term) 	1

Question 5 (d)

Solution	
Linear. The increase is a constant number	
Marking key/mathematical behaviours	Marks
identifies correct relationship	1
justifies choice of type	1

Question 5 (e)

Solution	
1960	
Marking key/mathematical behaviours	Marks
 identifies correct term (n = 9) 	1
determines correct value	1

Question 5 (f)

Solution	
18 hours	
Marking key/mathematical behaviours	Marks
identifies correct term	1

Question 6 (a)

Solution	
6	
Marking key/mathematical behaviours	Marks
identifies Hamiltonian circuits	1

Question 6 (b)

Solution	
WXYZW or WZYXW 63 km	
Marking key/mathematical behaviours	Marks
identifies shortest circuit	1
determines length of shortest circuit	1

Question 6 (c)

Solution	
It goes through each vertex only once	
It starts and ends at the same vertex	
Marking key/mathematical behaviours	Marks
identifies cyclic nature	1
describes path though vertices	1

Question 6 (d)

